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This paper is concerned with steady and unsteady flow rate limitations in open
capillary channels under low-gravity conditions. Capillary channels are widely used
in Space technology for liquid transportation and positioning, e.g. in fuel tanks and
life support systems. The channel observed in this work consists of two parallel plates
bounded by free liquid surfaces along the open sides. The capillary forces of the free
surfaces prevent leaking of the liquid and gas ingestion into the flow.

In the case of steady stable flow the capillary pressure balances the differential pre-
ssure between the liquid and the surrounding constant-pressure gas phase. Increasing
the flow rate in small steps causes a decrease of the liquid pressure. A maximum steady
flow rate is achieved when the flow rate exceeds a certain limit leading to a collapse
of the free surfaces due to the choking effect. In the case of unsteady flow additional
dynamic effects take place due to flow rate transition and liquid acceleration. The
maximum flow rate is smaller than in the case of steady flow. On the other hand,
the choking effect does not necessarily cause surface collapse and stable temporarily
choked flow is possible under certain circumstances.

To determine the limiting volumetric flow rate and stable flow dynamic properties,
a new stability theory for both steady and unsteady flow is introduced. Subcritical
and supercritical (choked) flow regimes are defined. Stability criteria are formulated
for each flow type. The steady (subcritical) criterion corresponds to the speed index
defined by the limiting longitudinal small-amplitude wave speed, similar to the Mach
number. The unsteady (supercritical) criterion for choked flow is defined by a new
characteristic number, the dynamic index. It is based on pressure balances and reaches
unity at the stability limit.

The unsteady model based on the Bernoulli equation and the mass balance equation
is solved numerically for perfectly wetting incompressible liquids. The unsteady model
and the stability theory are verified by comparison to results of a sounding rocket
experiment (TEXUS 41) on capillary channel flows launched in December 2005 from
ESRANGE in north Sweden. For a clear overview of subcritical, supercritical, and
unstable flow, parametric studies and stability diagrams are shown and compared to
experimental observations.

1. Introduction
Open capillary channels are used in a large number of applications in liquid

management in Space, e.g. advanced life support systems, heat pipes and in surface
tension tanks of spacecrafts. They create and maintain a flow path between two
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Figure 1. (a) Capillary channel consisting of two glass plates with two free liquid surfaces on
the sides (camera view from top). (b) Experimental set-up (TEXUS 41) with the test section
TS (capillary channel camera image), compensation tube CT, main reservoir MR, pump PuTS,
the flow rate sensor FM and the nozzle N. The main liquid loop is driven by the pump
along streamline A. Flow rate changes induce liquid oscillations between TS and CT along
streamline B.

variable points along their axis and capture the liquid by capillary forces. Thus,
capillary channels are widely used for the transport and positioning of propellants
(Jaekle 1991; Srinivasan 2003).

The open capillary channel considered in this work consists of two parallel plates
with one free liquid surface on each side, as depicted in figure 1(a). For an internal
pressure p lower than ambient pressure pa the free liquid surfaces have a concave
shape. The channel is connected to ducts of closed circumference. The main liquid
loop is driven by a gear pump, along a streamline a, shown in figure 1(b). A
secondary flow along streamline B is a consequence of the surface movement and
liquid displacement from the channel into the compensation tube and vice versa.

Increasing the pump flow rate Q increases the differential pressure between the
liquid and the surrounding constant gas pressure. At a maximum flow rate Qmax the
free surfaces of the channel collapse and gas ingestion into the liquid occurs. This
might cause bubbles in the propellant and degradation of the thruster performance.
For technical applications the flow rate must be limited below the maximum value.

The effect of the steady flow rate limitation due to choking has been the subject of a
previous paper (Rosendahl, Ohlhoff & Dreyer 2004). In general, choking occurs when
the local fluid velocity v reaches the value of the limiting longitudinal small-amplitude
wave speed vca and the capillary speed index reaches unity: Sca ≡ v/vca = 1. A steady
flow is obtained only for a flow rate below this critical value (subcritical flow).

In this paper the flow limitation theory is revised for steady flow and extended
for unsteady conditions. The unsteady effect is defined by a dynamic flow rate
increase during a given time period, and causes an additional flow rate limitation. On
the other hand, unsteady flow can temporarily be choked but remains stable. Hence
the choking effect defines two flow regimes, subcritical and supercritical (choked)
flow. The demarcation between these regimes is defined by the speed index, which
reaches unity at a critical (choking) point. Stable steady flow is possible in the
subcritical regime only and the surfaces collapse at the critical point. Unsteady flow
can temporarily reach the supercritical regime, which is mainly influenced by the
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Lengths Velocities Others Characteristic numbers

x = x ′/l vc =
√

2σ/(ρa) t = t ′vc/ l Oh =
√

ρν2/(2σa)
y = 2y ′/a v = v′/vc A0 = ab Λ = b/a

z = 2z′/a vca = v′
ca/vc A = A′/A0 l̃ = Oh l/(4a)

k = 2k′/a p = ap′/(2σ ) Q = Q′/(A0vc)
R = 2R′/a h = ah′/2 δ = �Q/�t

R1,2 = 2R′
1,2/a Γ = a/(2l)

l0 = l′
0/l Re = 2av′/ν

Table 1. Scaled variables and characteristic numbers.

choking effect. The stability in the supercritical flow regime can be explained by a
pressure balance at the liquid surface.

In the studies an unsteady mathematical model is used (one-dimensional approach).
The model is based on the mass balance equation, the Bernoulli equation, the Gauss–
Laplace equation and the appropriate boundary conditions. To solve the equations
second-order finite difference approximations are applied. For the integration of the
differential-algebraic equation system a linearly implicit method is used. The numerical
solutions are verified by comparison to experimental measurement and coincide well.

This paper is organized in five sections. In § 2 the unsteady flow model for the open
capillary channel is formulated. Based on the model, § 3 formulates an augmented
theory for the steady and unsteady flow rate limitation for open capillary channels.
The reliability of the model is demonstrated by comparison to experimental results and
numerical studies in § 4. Steady and dynamic flow limitation effects are discussed, based
on the speed index Sca and a new characteristic number, the dynamic index D. The
accuracy of the stability prediction is demonstrated by comparison to experimentally
observed flow regimes. The paper is summarized in § 5.

2. The model
The model considers unsteady liquid flow through an open parallel plate channel,

as shown in figure 1(a). The gap distance, the width of the plates and the length of the
open section are denoted a, b and l, respectively. The origin of the coordinate system is
located at the centre of the inlet cross-section. We assume an incompressible, perfectly
wetting Newtonian liquid and isothermal conditions. The maximum Reynolds number
Re (table 1) in the channel is lower than 103 and therefore the flow is assumed to
be laminar. The unsteady effect is induced by increasing the pump flow rate Q. The
pump is located at the outlet of the capillary channel, as shown in figure 1(b). It is
assumed that the velocity component in the flow direction x is significantly larger
than in the lateral (y, z) directions, and that the cross-section changes are sufficiently
small. Hence the flow along the channel axis x may be considered as one-dimensional.
Owing to the low gravity environment, the hydrostatic pressure distribution over the
channel cross-section is negligible, and the pressure p over the flow cross-section area
A may be considered as constant.

2.1. Scaling

Dimensionless quantities were used to solve the model equations. The scaling
quantities are given in table 1. The x-axis is scaled with the channel length l, all other
lengths with a/2. Velocities are scaled by the characteristic velocity vc =

√
2σ/(ρa)

where σ is the surface tension and ρ the density of the liquid. The time is scaled by
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vc and the channel length l; the cross-sectional area A by the inlet value A0 = ab. The
pressure is scaled with a characteristic capillary pressure 2σ/a. The flow is considered
to be one-dimensional along the channel axis x and is characterized by the mean
velocity v and the liquid pressure p. Furthermore the dimensionless channel length

l̃ =
Oh l

4a
(2.1)

is introduced, a common scaling of frictional duct flows. The Ohnesorge number is

Oh =

√
ρν2

2σa
=

2

Rec

with Rec =
2avc

ν
. (2.2)

The Ohnesorge number is inversely proportional to the Reynolds number based on
the characteristic velocity vc; ν denotes the kinematic viscosity. The aspect ratio is

Λ =
b

a
. (2.3)

2.2. Governing equations

The dimensionless governing equations are the unsteady mass balance equation

−∂tA = v∂xA + A∂xv (2.4)

and the unsteady Bernoulli equation (White 1986) with a viscous pressure loss term
in the flow direction and differentiated with respect to the x-coordinate

−∂tv = ∂xp + v∂xv + ∂xwf (2.5)

where ∂t = ∂/∂t and ∂x = ∂/∂x are the temporal and spatial derivatives. Since the
viscosity of the gas is significantly smaller the tangential stresses at the free surface
are negligible and the surrounding gas phase may be regarded as passive. Thus, the
capillary pressure p − pa is directly related to the curvature of the liquid surface. It
can be determined by the Gauss–Laplace equation (Landau & Lifschitz 1959)

p − pa = −h = −
(

1

R1

+
1

R2

)
. (2.6)

R1 and R2 are the principal radii and h/2 the mean curvature of the liquid surface.
Since the ambient pressure pa is constant, the pressure gradient in equation (2.5)
becomes

∂xp = −∂xh. (2.7)

The viscous pressure loss wf is based on both laminar pressure loss wpf of a fully
developed flow profile and additional pressure loss wSf due to development of the
velocity profile in the entrance region. For one-dimensional steady flow with constant
cross-section the pressure loss yields

∂xwf =
Kf Oh

8a
lv =

Kf

2
l̃v, (2.8)

with the pressure loss factor

Kf = Kpf + 16K̂Sf , (2.9)

and Kpf = 96 for parallel plates (White 1986). Assuming an initial plug flow for the
additional pressure loss due to the profile change, a pressure-drop function KSf for
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parallel plates from Sparrow & Lin (1964) is applied. In differential form it is

K̂Sf =
dKSf (x̂)

dx̂
(2.10)

and depends on the coordinate x̂ = 4νx ′/(a2v′)+ s0. This term contributes only within
the entrance length le where the profile changes. Therefore the velocity profile at
the channel inlet is partly developed and deviates from the assumed plug profile. To
consider this entrance velocity profile, the coordinate x in equation (2.10) is shifted
by

s0 =
LOh

2v0A0

, (2.11)

where v0 is the velocity and A0 is the cross-section at the channel inlet. The entrance
factor L is defined by the nozzle in the flow path before the channel entrance, as
shown in figure 1 and was calculated by three-dimensional numerical simulations
using commercial software (the parameter values are given in § 4.1). The pressure
loss effects are assumed to be significant for the initial and final steady states but of
minor importance for the dynamic behaviour of the flow. Nevertheless the pressure
loss effects are considered to maintain compatibility with the model of Rosendahl
et al. (2004).

The surface model of Rosendahl et al. (2004) is used for the connection of the cross-
sectional area A to the capillary pressure p or curvature h/2. It assumes symmetry
with respect to the planes y =0 and z = 0 in figure 1. The contour k represents the
innermost surface position in the symmetry plane y =0 (surface profile). The model
defines h and A as a function of k and its derivatives with respect to x, ∂xk = ∂k/∂x

and ∂xxk = ∂2k/∂x2. The Gauss–Laplace equation (2.6) can be expressed as a function
of the free surface contour k only:

h(x) =
1

R1

+
1

R2

=
1

R1

+
Γ 2∂xxk[

1 + Γ 2(∂xk)2
]3/2

, Γ = a/(2l). (2.12)

The pressure and the curvature in the principal plane (y, z∗) are assumed to be
constant. The surface is a segment of a circle with radius R1 that may be derived
using the geometrical relations of figure 2:

R1 =
1 + d∗2

2d∗ , d∗ = d
[
1 + Γ 2(∂xk)2

]1/2
, d = Λ − k. (2.13)

The radius R1 may change between infinity (plane surface) and unity (maximum
curvature). When the liquid separates from the edges of the channel, the free surface
moves inwards between the parallel plates and the cross-sectional area decreases
further. Since the contact angle between the liquid and the solid is zero, the radius
of curvature is half the plate distance apart, R1 = 1. For the pinned and separated
conditions we obtain

R1 =

⎧⎪⎨
⎪⎩

1 + (Λ − k)2
[
1 + Γ 2(∂xk)2

]
2(Λ − k)

[
1 + Γ 2(∂xk)2

]1/2 for k � Λ −
[
1 + Γ 2(∂xk)2

]−1/2

1 for k < Λ −
[
1 + Γ 2(∂xk)2

]−1/2
.

(2.14)
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Figure 2. (a) Cross-section of the channel in the (y, z)-plane; the radius R is visible. (b) Cut
through the (x, z)-plane; flow direction is upwards. (c) Cut through the tilted (y, z∗)-plane; the
first principal radius R1 is visible. The liquid is shown grey.

The cross-sectional area A (figure 2) is defined as a function of the profile contour k:

A(k) =

⎧⎨
⎩1 − R2

2Λ
arcsin

1

R
+

1

2Λ
(R − Λ + k); R =

1 + (Λ − k)2

2(Λ − k)
for k � Λ − 1

(k + 1 − π/4) /Λ for k < Λ − 1.

(2.15)

2.3. Final equations

Based on the mass balance equation (2.4), the Bernoulli equation (2.5), the surface
equation (2.12) and the cross-section (2.15) we obtain an unsteady, coupled, partial
differential equation system of second order:

−∂v

∂t
= −∂h

∂x
+ v

∂v

∂x
+

Kf l̃

2
v, (2.16)

−∂A

∂t
= v

∂A

∂x
+ A

∂v

∂x
, (2.17)

0 = Γ 2 ∂2k

∂x2
+

(
1

R1

− h

) [
1 + Γ 2

(
∂k

∂x

)2
]3/2

, (2.18)

0 = A(k) −

⎧⎪⎪⎨
⎪⎪⎩

1 − R2

2Λ
arcsin

1

R
+

1

2Λ
(R − Λ + k), k � Λ − 1,

1

Λ

(
k + 1 − π

4

)
, k < Λ − 1.

(2.19)

The boundary conditions are given by the unsteady pump flow rate at the channel
outlet v1(t) = Q(t)/A0, the surface curvature at the inlet and the position of the liquid
surface at the channel inlet and outlet (the surface is pinned at the edges of the closed
ducts):

v(x = 1) = v1(t)

h(x = 0) = h0

k(x = 0) = k(x = 1) = Λ

⎫⎪⎬
⎪⎭. (2.20)
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The surface curvature at the channel inlet h0 strongly depends on the flow conditions
in the tank and the nozzle, and on the interaction between the capillary channel and
the compensation tube (streamlines A and B in figure 1(b)). It may be expressed with

−l0
∂v0

∂t
= −h0 + K0 + K1 Oh

v0

4
+ K2

v2
0

2
+ K3Oh [v0 − v1(t)]. (2.21)

Unsteady flow causes a velocity difference between channel inlet and outlet v0 − v1(t)
and the liquid moves along streamline B in figure 1(b) with the pressure loss factor
K3. The factor K0 is given by the system pressure, induced by the meniscus of the
compensation tube in figure 1(b). The parameters K1 and K2 prescribe the pressure
loss in the nozzle at the channel entrance. The frequency of the oscillation is mainly
defined by the displaced liquid mass, represented by the effective length l0 of streamline
B. The parameter values are given in § 4.1.

2.4. Numerical procedure

For the numerical solution of the coupled nonlinear system (2.16)–(2.20) we treat v,
A, h and k as variables and use finite differences and a uniform grid with N � 1000
discrete points. The derivatives ∂xv, ∂xk, ∂xh and ∂xxk are discretized by second-order
central differences. At the inlet and outlet boundary, the derivatives are calculated
by first-order upstream and downstream differences. In case of a steady solution the
system of nonlinear equations is solved with a damped Newton method. Thus the
time-dependent terms on the left-hand side of the system (2.16)–(2.20) are considered
equal to zero. For time integration we apply the linearly implicit extrapolation code
LIMEX (Ehrig et al. 1999). Combined with extrapolation this one-step method
permits an adaptive step size and order control.

3. Open channel flow stability criteria
Equations (2.16)–(2.21) have been solved and compared to experimental data.

The good agreement, as will be shown later, validates the model and allows one
to formulate criteria for the stability of the flow. For the channel type examined,
indicated by l̃ < 10−3 in the Oh and Λ range (§ 4.1), the irreversible pressure losses
can be neglected (as shown by Rosendahl et al. 2004).

The liquid is confined to the open capillary channel by capillary forces only. These
forces prevent leaking of the liquid and gas ingestion. The curvature of the liquid
surface in figure 3(a) creates a capillary pressure h, prescribed by the Gauss–Laplace
equation (2.12). The capillary pressure has to withstand all flow-induced pressure
effects. One of them, the convective pressure χ , is caused by convective acceleration
v∂v/∂x in equation (2.16) due to cross-section changes in the flow direction. In the
case of unsteady flow, the local acceleration ∂v/∂t in equation (2.16) adds an additional
pressure effect, which is basically the difference h − χ . Of major significance is the
channel position x∗ with the highest velocity and the minimum contour k∗, as shown
in figure 3(a) (all variables identified with this point are denoted with an asterisk).
The integral of equation (2.16) between channel positions x = 0 and x = x∗ is∫ x∗

0

dv

dt
dx = h∗ − h∗

0 − 1
2

(
v∗2 − v2

0

)
. (3.1)

The irreversible pressure loss effects are of minor importance for the flow stability of
this channel type and are neglected. Based on equation (3.1), the convective pressure
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Figure 3. (a) Steady equilibrium of the capillary pressure h∗ and the convective pressure
χ∗ at channel position x∗; v0 is the entrance velocity, h0 the entrance pressure. (b) Steady
pressure diagram for the capillary pressure h∗ (bold line) and the theoretical convective pressure
k∗-dependence at different constant flow rates χ∗

Q (thin lines); k∗ is the contour at x = x∗.

χ∗ at the position x = x∗ in figure 3(a) can be defined as

χ∗ = h0 + 1
2

(
v∗2 − v2

0

)
. (3.2)

The entrance pressure at x = 0 is h0 (entrance curvature) and the entrance velocity
is v0. The convective pressure creates forces opposite to the capillary pressure h∗, as
shown in figure 3(a). Furthermore, the convective pressure is a square function of
the velocity v∗ and increases significantly at a reduction of the cross-section and the
contour k∗. Hence the convective pressure has a high potential for destabilization
and plays a significant role in the liquid stability. Finally, the pressure balance at the
channel position x = x∗ is ∫ x∗

0

dv

dt
dx = h∗ − χ∗. (3.3)

3.1. Steady surface stability

A special case is steady flow. The unsteady effect on the left-hand side of equation (3.3)
is equal to zero. Hence, both pressures are in steady equilibrium χ∗ = h∗. The steady
pressure diagram in figure 3(b) shows the dependence on the capillary pressure h∗

on the surface contour k∗ (bold line). The thin χ∗
Q-lines represent the theoretical

behaviour of the convective pressure χ∗ over k∗ for a constant flow rate Q = v∗A∗.
The cross-section A∗ = A(k∗) is defined by equation (2.19). A steady state is given by
the intersection of the h∗-line and the χ∗

Q-line, e.g. at point A in figure 3(b) for a
particular constant flow rate Q.

The stability of the equilibrium at point A is based on the higher gradient of the
h∗-line in comparison to the χ∗

Q-line. An external perturbation (e.g. ambient pressure
change) causes a surface movement, leading to (moderate) changes of k∗. The result
is a change of the capillary pressure along the h∗-line and of the convective pressure
along the χ∗

Q-line (due to the constant flow rate). Since the h∗-line is steeper than the
χ∗

Q-line, the capillary pressure always acts in a stabilizing way and compensates the
convective pressure. Hence a steady stability criterion can be formulated, based on
the gradients: ∣∣∣∣∂h∗

∂k∗

∣∣∣∣ >

∣∣∣∣∂χ∗

∂k∗

∣∣∣∣. (3.4)
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Figure 4. (a) The flow rate transition function Q(t) is defined by a flow rate change �Q
in a time period �T . The flow rate increases sinusoidally for t < �T and achieves a final,
constant value of Q(t) =Q at t = �T . (b) The time period �T is defined as 1/4 of the natural
period T0. Thus the flow rate transition is in resonance with the natural frequency of the liquid
oscillation.

Increasing the flow rate Q in small steps leads to a series of steady flow conditions.
The surface bends inwards and the equilibrium point A in figure 3(b) moves upwards
along the h∗-line. Owing to the power function of the velocity in the convective
pressure equation (3.2), the gradient of the χ∗

Q-line increases significantly for smaller
k values. On the other hand, the gradient of the h∗-line decreases slightly due to the
geometrical constrictions of the bent liquid surface. It turns out that the difference of
the gradients decreases with decreasing k∗. When a critical point CP in figure 3(b) is
reached, the gradients are equal. The stability limit of the steady liquid flow is reached
and the surfaces collapse. The stable equilibrium on the right-hand side of the critical
point can be considered as subcritical.

At the critical point, a singularity occurs in the numerical solution. It can be shown
that a supercritical numerical solution exists as well, marked by the dashed line in
the grey area in figure 3(b). This is a theoretical state of no practical significance for
the steady flow theory. But as shown below, it corresponds to the stability limit of
unsteady flow.

Equating the terms of the inequality (3.4) and replacing the velocity by a small-
amplitude wave speed v∗

ca leads to the capillary speed index, defined by Rosendahl
et al. (2004):

Sca =
v∗

v∗
ca

= v∗
√

− 1

A∗
∂A∗

∂h∗ . (3.5)

Each (small) flow rate change at the channel outlet requires an adjustment of the inlet
flow rate. This causes a longitudinal disturbance, moving as a wave upstream with
the wave speed vca . The wave velocity has to be higher than the flow velocity v∗ to
pass the point with the minimum cross-section. At the critical point CP in figure 3(b)
the velocities are equal, v∗

ca = v∗, and the speed index reaches the value Sca =1; the
channel is choked. In the case of further flow rate increase the free liquid surfaces
collapse immediately and gas ingestion occurs.

3.2. Unsteady surface stability

For unsteady studies, a flow rate transition function Q(t) is applied to emulate
the pump dynamic. The transition function defines the velocity boundary condition
v1(t) = Q(t)/A0 in equations (2.20) and (2.21). The function is based on experimental
experience and performs a sinusoidal flow rate increase, as shown in figure 4(a). It is
defined by the flow rate change �Q in a time period �T and the final constant flow
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Figure 5. Unsteady pressure diagram for the capillary pressure h∗ and the convective
pressure χ∗ for unstable flow. The dashed line represents the steady flow equilibrium, given in
figure 3. The initial subcritical steady state is denoted A at the intersection of the h∗-line and
the χ∗

Q-line. The supercritical regime is reached at the critical point CP. The surface collapse
occurs at the destabilization point DP.

rate Q:

Q(t) = Q − �Q
(
1 − sin

πt

2�T

)
, 0 � t � �T. (3.6)

The transition function is Q(t) = Q for t >�T . The transition dynamic is defined as

δ =
�Q

�T
. (3.7)

The time period �T is defined as 1/4 of the natural period T0, as shown in figure 4(b).
Thus the flow rate transition is in resonance with the natural frequency of the liquid
oscillation. In the following the unsteady flow rate transition is defined by two
parameters, the final flow rate Q and the preceding flow rate transition dynamic δ.

The flow rate transition increases the channel exit velocity v1 of the boundary
conditions (2.20). This causes acceleration pressure effects, defined by the time-
dependent left-hand sides of equations (2.16), (2.21) and (3.3). The capillary pressure
h∗ and the convective pressure χ∗ are not equal for a period of time as shown in the
unsteady pressure diagram in figure 5. Point A indicates the subcritical steady state
at the beginning of the unsteady phase. During the following transition the liquid
surface is drawn into the channel and the contour k∗ decreases. The capillary pressure
h∗ moves along the upper bold line of the pressure diagram in figure 5. The capillary
pressure is a function of the liquid surface curvature only and thus behaves very
similar to the steady case, as indicated by the dashed line, which matches the steady
pressure diagram in figure 3(b). The difference between the steady and unsteady
capillary pressure in figure 5 is based on surface deformations in the unsteady case.
Liquid displacement from the vicinity of the channel outlet into the compensation
tube causes surface asymmetry in the x-direction. The asymmetry has an influence
on the surface curvature and the h∗-line is shifted to the left in comparison with the
steady case.

The difference h∗ − χ∗ in figure 5 represents the dynamic pressure effect, caused
by the acceleration term in equation (3.3). The χ∗-line increases to the left, below
the h∗-line but above the χ∗

Q-line, owing to the increasing flow rate Q. Owing to the
unsteady terms no singularity occurs for the numerical solution at the critical point
CP. The flow remains stable and the supercritical flow regime on the left-hand side
of the critical point in figure 5 can be reached in the case of dynamic flow.
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Plate distance a = 10mm
Plate width b = 25mm
Channel length l = 15.4mm (12 mm)
Fluid density ρ = 1639 kg m−3

Surface tension σ = 1.756 × 10−2 N m−1

Viscosity ν = 0.901 × 10−6 m2 s−1

Table 2. Channel dimensions and liquid properties (HFE-7500; 15.8 oC), applied in the
TEXUS 41 experiment.

The speed index (3.5) is a function of the geometrical properties A∗ and h∗ only
and can be applied to the unsteady case as well. The speed index reaches the value
Sca = 1 at the critical point CP in figure 5 and the supercritical flow is choked. No
further acceleration takes place and the distance h∗ − χ∗ decreases for decreasing k∗

in the supercritical area. The communication between the channel outlet and inlet
is interrupted. The inlet flow rate does not follow the outlet demand. The mismatch
of the inlet and outlet flow rate in the choked channel is compensated by liquid
displacement. The convective pressure increases significantly for decreasing k∗ owing
to the power law for the velocity in equation (3.2). The consequences are high local
curvatures and a significant increase of the h∗-line gradient in the supercritical area.

When the (destabilizing) convective pressure χ∗ reaches the value of the
(conservative) capillary pressure h∗, the free liquid surfaces collapse at the destabili-
zation point DP in figure 5. Hence the supercritical unsteady stability limit criterion
can be formulated as

χ∗ < h∗. (3.8)

If approached slowly, the unsteady stability limit is identical to the steady overcritical
solution in figure 3(b); the destabilization point DP is on the dashed line in the
supercritical regime in figure 5. Based on the unsteady stability limit, the dynamic index

D = 1 − h∗ − χ∗

h∗ − χ∗
0

(3.9)

is defined with the capillary pressure h∗, the convective pressure χ∗ and the convective
pressure at the beginning of the unsteady phase χ∗

0 =χ∗(t =0) (point A in figure 5).
The initial value h∗ − χ∗

0 serves for scaling and to suppress false indication at t =0
in the subcritical area. The difference h∗ − χ∗ tends to zero at the stability limit. An
unsteady open capillary channel flow is stable if the dynamic index does not reaches
the value D = 1 in the supercritical area.

4. Experimental and numerical results
4.1. Experimental verification of the model

The model was verified by comparison to results of a sounding rocket experiment on
capillary channel flow (TEXUS 41), launched from ESRANGE in north Sweden in
December 2005 (Rosendahl & Dreyer 2007). The geometric properties of the channel
are depicted in figure 1(a), the experimental set-up is shown in figure 1(b). The test
liquid used for the experiment is HFE-7500. Channel dimensions and liquid properties
are given in table 2.

The scaling is performed according to the definitions in table 1. The scaled model
parameters and characteristic numbers for the numerical evaluation are given in
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Parameter Value Equation

Dimensionless length l̃ = 7.5 × 10−4 (2.1)
Ohnesorge number Oh = 1.95 × 10−3 (2.2)
Aspect ratio Λ = 2.5 (2.3)
Pressure loss factor Kpf = 96 (2.9)
Entrance factor L = −208 (2.11)
Inlet factor K0 = 0.333 (2.21)
Inlet factor K1 = 498 (2.21)
Inlet factor K2 = 1.4 (2.21)
Inlet factor K3 = Oh−1 (2.21)
Effective streamline length l0 = 12.5 (2.21)

Table 3. Scaled parameter values for numerical evaluation.

table 3. The channel length l, the aspect ratio Λ, and the Ohnesorge number Oh
are defined by geometry and liquid properties in table 2. Owing to wetting problems
during the experiment the liquid surface did not remain pinned to the channel inlet.
The contact line of the surface moved upwards along the housing and the free
surface length increased. An effective surface length of l = 15.4 mm is measured.

The pressure loss factor for parallel plates Kpf is derived from White (1986). The
factor K0 = (pa − p)a/(2σ ) represents the capillary pressure, induced by the meniscus
in the compensation tube. The entrance factor L and the inlet factors K1 and K2

are based on three-dimensional evaluations using commercial software for the inlet
nozzle in figure 1(b). The parameters for unsteady liquid movement along streamline
B in figure 1(b) are the inlet factor K3 and the effective streamline length l0. K3 is
the effective pressure loss factor for the displacement flow from the channel into the
compensation tube (and back) and was approximated with a circular tube flow. The
effective streamline length l0 represents the physical distance between the capillary
channel and the compensation tube. It was particularly difficult to obtain precise
values for K3 and l0 owing to the complicated set-up geometry, which was primarily
designed for steady flow observation. Thus, the theoretically obtained values had to
be adapted to the set-up, based on observation of frequency, amplitude, and damping
of the liquid oscillation. However, the adaptation of the inlet factors has no influence
on the results of the surface stability analysis for the present geometry.

A comparison of scaled experimental and numerical results is shown in figure 6. The
upper diagram in figure 6(a) shows the surface contour k∗ (at the point of minimum
cross-section) over time t . The lower diagram in figure 6(a) shows the actual flow rate
Q(t) measured in the experiment. It was used to define the outlet flow velocity v1(t) of
the boundary conditions (2.20) and (2.21) of the model. The surface oscillations are a
result of the stepwise increase of the flow rate of the pump. The numerical solutions
over time in figure 6(a) and the corresponding profiles over the channel length in
figure 6(b) are in good agreement with the experimental results.

4.2. Steady flow stability studies

To examine the stability limits of the TEXUS 41 liquid surface system, the theory
described in § 3 is applied onto the model in § 2. The pressure diagram for steady flow
is shown in figure 7. It corresponds to the principle explained in figure 3(b).

The bold line represents the capillary pressure h∗ at the point of minimum cross-
section. The thin χ∗

Q-lines show the convective pressure χ∗ as a theoretical function
of the surface position k∗ for different constant volume flow rates Q. The convective
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Figure 6. Comparison of numerical (—) and experimental (· · ·) liquid surface contour for the
TEXUS 41 experiment: (a) oscillation of the contour k∗ versus time t (the asterisk denotes
quantities at the point of minimum contour along the channel length x); Q is the measured
flow rate; (b) contour k over the channel length x at selected time points.

pressure is defined by equation (3.2). The bottom χ∗
Q-line in case of no flow (Q = 0)

represents the remaining system pressure K0 = 0.333 (table 3) induced by the meniscus
in the compensation tube in figure 1(b).

In general the actual steady pressure equilibrium h∗ = χ∗ is defined by the
intersection of the h∗-line and the χ∗

Q-line for a specified flow rate Q. The critical point
CP divides the h∗-line into two flow regimes. The subcritical flow regime is indicated
with a bold h∗-line, the supercritical flow regime with a dashed bold line (grey area).
In the subcritical area the h∗-line is steeper than the χ∗

Q-lines and the liquid surface is
stable because of the subcritical criterion (3.4). The speed index (3.5) is less than unity
in this area. The critical point CP is located where the gradients of the h∗-line and
one of the χ∗

Q-lines are equal and the speed index attains unity. The corresponding
flow rate is the critical flow rate Qcrit, which causes a liquid surface collapse for
steady flow. In the supercritical regime the χ∗

Q-lines are steeper and no steady flow
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Figure 8. Comparison of numerical and experimental steady speed index values Sca over the
flow rate Q (TEXUS 41). The critical flow rate is Qcrit ≈ 0.946.

is possible. The supercritical solution has no significance for steady flow, but defines
the dynamic stability limit for unsteady flow. The numerically evaluated critical flow
rate is Qcrit ≈ 0.946. As shown in figure 8 the highest achieved experimental flow rate
was Q ≈ 0.93. Owing to the high sensitivity at this flow rate, very small perturbations
normally cause early collapse of the surfaces. The unperturbed experimental critical
flow rate can be assumed slightly higher, which matches well the numerical value. The
geometry of the channel and the symmetry of the liquid surfaces in the represented
case allow an estimation of the capillary pressure at the critical point;

h∗
CP ≈

(
1

R1

+
1

R2

)
= 1 +

a

l
= 1.65, (4.1)



Stability limits of unsteady open capillary channel flow 285

(a) (b)

9 101 20

2.5

2.0

0.5

1.0

1.5

3 4 5 6 7 8

v*

A*

Sca

Sca

χ*

A

t

k*

k* , 
h* , 

v* , 
A

* , 
χ

* , 
S c

a,
 D

h*

1.4 1.6 1.8 2.0 2.2 2.4

0.4

0.8

1.2

1.6

2.0

1.2

h*

χ*

k*

A

CP

C

h* , 
χ

*

B

D

B

Figure 9. Stable oscillation for a transition dynamic δ = 0.05 and a final flow rate Q = 0.8.
(a) First amplitude with the speed index and dynamic index vs. time. (b) Pressure diagram for
the entire oscillation: A, initial steady state; B, supercritical amplitude; C, final steady state.

using the Gauss–Laplace equation (2.12). The radii are approximately R′
1 ≈ a/2 and

R′
2 ≈ l/2 at the point of maximum curvature. The scaled radii are R1 = 1 and R2 = a/l

(scaled with a/2, according to table 1). Plate distance a and channel length l are given
in table 2. The value h∗

CP ≈ 1.65 matches well the capillary pressure at the critical
point CP in figure 7.

The comparison of evaluated and experimental subcritical steady speed index values
is shown in figure 8. The experimental measurement was performed according to the
method represented by Rosendahl et al. (2004).

4.3. Unsteady flow stability studies

For unsteady flow stability studies the flow rate function for the pump dynamic given
in equation (3.6) is applied. The flow transition is defined by the final constant flow
rate Q and the dynamic δ = �Q/�T , given in equation (3.7). The time constant �T

is defined as 1/4 of the natural time period of the oscillation. For the TEXUS 41
system the time constant could be approximated by �T = 2, based on observation of
the oscillation in figure 6.

A stable oscillation caused by a flow rate transition is shown in figure 9. The
transition dynamic is δ = 0.05 and the final flow rate after the transition is Q =0.8.
The first oscillation amplitude over time is depicted in figure 9(a) for the solution
of equations (2.16)–(2.19). The model variables are the surface contour k∗, the
capillary pressure (surface curvature) h∗, the flow velocity v∗ and the cross-section
A∗. Furthermore the convective pressure χ∗ (3.2), the speed index Sca (3.5) and the
dynamic index D (3.9) versus time are shown.

The initial state at t =0 is steady flow in the subcritical regime. The capillary
pressure and the convective pressure are in balance at point A. The transition phase
starts with the flow rate acceleration. As the liquid surfaces are drawn into the
channel, the contour k∗ and the cross-section A∗ decrease. The capillary pressure h∗,
the velocity v∗ and the convective pressure χ∗ increase. The speed index Sca and the
dynamic Index D increase as well. The convective pressure maximum is reached at
point B.

The supercritical regime (grey) is reached, when the speed index reaches unity in
figure 9(a). The capillary wave speed is smaller than the flow velocity and the channel
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is choked. The communication between the pump at the channel outlet and the inlet
is temporarily interrupted in the area of minimum cross-section. The channel inlet
flow does not follow the outlet acceleration and the transportation mismatch is
compensated by liquid displacement between the channel and the compensation tube.
The convective pressure χ∗ remains below the value of the capillary pressure h∗

during the supercritical phase. Hence, the dynamic index D remains below the critical
value 1 and the unsteady flow is stable.

In the pressure diagram in figure 9(b) the entire damped oscillation is shown for
the capillary pressure h∗ and the convective pressure χ∗ as functions of the contour
k∗. The initial steady pressure equilibrium at point A and the first convective pressure
amplitude at point B correspond with figure 9(a). The supercritical regime is reached
at the critical point CP, which is a turning point on the h∗-line. At point C the
capillary pressure h∗ and the convective pressure χ∗ are in steady equilibrium again.
Contrary to the unstable pressure diagram in figure 5 the convective pressure remains
below the capillary pressure and the unsteady flow is stable in this case.

In order to give an overview of the unsteady flow stability for this channel type,
numerical studies are performed for different transition dynamics and different flow
rates. The subcritical unsteady speed index diagram is shown in figure 10(a). The
flow rate Q is the final flow rate after the transition defined by equation (3.6), and
Sca is the maximal speed index value during the transition (example: a transition
to a final flow rate of Q =0.6 with a dynamic δ = 0.05 produces temporarily a
maximal speed index value of Sca ≈ 0.59). The bottom line represents the speed
index for steady flow δ = 0 and corresponds to the steady function in figure 8. The
critical flow rate for the steady flow is Qcrit ≈ 0.946 where the speed index reaches
the value Sca = 1 and the liquid surfaces collapse. For increasing dynamics δ the
speed index line is shifted to the left and the flow rate at which unity is reached
decreases.

The transition diagram in figure 10(b) gives an overview of steady and dynamic flow
stability for the present channel type. The diagram is based on numerical evaluations.
The symbols are actual stable (filled symbols) and unstable (open symbols) transitions
observed in the TEXUS 41 experiment. The speed index Sca , the maximum dynamic
index D and the available flow regimes are shown as functions of the flow rate Q

(after the transition) and the transition dynamic δ. Subcritical flow can be found in
area A (Sca < 1), supercritical stable flow in area B (Sca > 1, D < 1) and subcritical
unstable flow in area C (D > 1). At Sca = 1 the flow rate reaches the critical value
Q =Qcrit and the flow is temporarily choked, but remains stable. At the stability
limit D = 1 the flow rate reaches the maximal value Q =Qmax for stable flow. Further
increase of the flow rate or the transition dynamic will cause liquid surface collapse.
For example, the transition to Q =0.4 with δ = 0.05 yields Sca ≈ 0.3 which is obviously
subcritical and the transition to Q =0.8 with δ = 0.05 is supercritical and stable. The
maximal possible stable flow rate for the transition dynamic δ = 0.05 is Qmax ≈ 0.83.
For the steady case, which can be found on the abscissa (δ =0), the maximum flow
rate is identical to the critical flow rate Qmax = Qcrit ≈ 0.946 (figures 7 and 8) at the
point D = Sca = 1. A steady stable supercritical flow regime does not exist. The dashed
line in both diagrams in figure 10 is based on the fact that a flow rate cannot be less
than the preceding flow rate increase.

In figure 11 a numerical parameter study for the TEXUS 41 channel geometry
is shown. The investigated parameter is the scaled channel length l̃. The diagram
displays the maximum flow rate Qmax over the transition dynamic δ. The maximum
flow rate is the highest value for the flow rate Q in equation (3.6) that does not lead
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Figure 10. (a) Speed index Sca vs. flow rate Q for different transition dynamics δ. (b) Transition
dynamic δ vs. flow rate Q with subcritical regime A, supercritical regime B and unstable flow
regime C. The demarcation line for the supercritical regime is Sca = 1, the stability limit
is D =1. The symbols denote stable (filled) and unstable (open) transitions in the TEXUS
41 experiment. In (a) and (b) the limit on the left (dashed line), a final flow rate cannot
be less than the preceding flow rate increase. The critical flow rate for the steady flow is
Qcrit ≈ 0.946.

to a collapse of the free liquid surfaces. The parameter value valid for the TEXUS 41
experiment geometry is denoted by the dashed line in figure 11. In general, the
maximum flow rate decreases for higher transition dynamics δ. The increase of the
scaled channel length l̃ causes an increase of the viscous pressure loss effect and
the maximum flow rate is decreasing. The available transition dynamic on the other
hand is increasing with increasing channel length l̃ in the plotted parameter range.
This effect is based on an increasing amount of liquid within the channel and thus a
diminishing sensitivity for temporary mismatch between outlet and inlet flow rates in
the case of choking.

5. Summary
This paper investigates steady and unsteady forced liquid flow through an open

capillary channel under low-gravity conditions. The channel is bounded by free liquid
surfaces at the open sides. Based on experimental observation a one-dimensional
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Figure 11. The maximum flow rate Qmax as a function of the transition dynamic δ and the
scaled channel length l̃; the dashed line represents the maximum flow rate for the TEXUS 41
experiment geometry (l̃ = 7.5 × 10−4).

unsteady flow model is formulated and applied for numerical studies. The model
is related to the capillary pressure at the free surface and the convective
pressure caused by spatial liquid velocity change. Experiments performed aboard
a sounding rocket are presented and show good agreement with the numerical
calculations.

The investigation is focused on the effect of flow rate limitation for both steady
and unsteady flows. If the flow rate exceeds a certain limit the free surfaces of the
channel collapse. The formulations of the stability criteria are based on the relation
of the capillary pressure and the convective pressure. The capillary pressure acts to
stabilize, but the convective pressure acts in the opposite way.

The stability criterion for steady flow is based on a higher gradient of the capillary
pressure in comparison to the gradient of the convective pressure. The criterion
defines a critical point where the gradients are equal and the surfaces collapse. The
critical point corresponds to the maximum flow rate. Steady flow is possible only in
the subcritical area below the critical point. The steady stability condition can be
related to the speed index Sca .

Unsteady flow yields an additional decrease of the flow rate limit due to acceleration
flow effects. The critical point does not represent the stability limit but defines the
change to supercritical flow. Supercritical flow is a choked flow when the speed index
reaches unity and the stability is based on a higher capillary pressure in comparison to
the convective pressure. A dynamic index D is defined that is valid in the supercritical
area. The surfaces collapse when the index reaches unity.

Numerical parameter studies are performed to identify the three regions in which
the unsteady flow is subcritical, supercritical, or unstable. The governing parameters
are the flow rate transition dynamic and the final flow rate. The result is a stability
diagram which classifies stable and instable flow conditions for a channel. Comparison
to stable and unstable flow rate transitions in the TEXUS 41 experiment shows good
agreement to the predictions.
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